
SPIKE Documentation v1.0

Braegan Spring

October 31, 2018

Contents

1 Intro 1

2 Compilation 2

3 Environment Variables 3

4 Examples 4

5 Usage 7
5.1 SPIKE parameter array entries . 7
5.2 A quick(-ish) note about partition sizes and spm 9
5.3 Subroutine Listing . 9

5.3.1 spikeinit . 9
5.3.2 Xspike tune . 10
5.3.3 Xspike gbsv . 10
5.3.4 Xspike gbtrf . 10
5.3.5 Xspike gbtrs . 10
5.3.6 Xspike gbtrsi . 10
5.3.7 Xspike gbtrfp . 10
5.3.8 Xspike gbtrsp . 11

5.4 Table of variables . 11
5.5 SPM entries . 12

A More Examples 13
A.1 Split Factorize & Solve . 13
A.2 Split Factorize & Solve With Pivoting . 14
A.3 Solve With Iterative Refinement . 15
A.4 Transpose Solve . 16
A.5 C example . 17

1 Intro

This implementation of SPIKE v1.0 is intended for use with banded matrices, on shared memory
machines. Overall we have attempted to follow the calling conventions of the LAPACK banded
solvers as closely as possible. However, SPIKE needs additional arguments to describe the parti-
tioning configuration, and some extra work space.

1

spike-1.0

bin doc examples

C Fortran

include lib

x64

src

Figure 1: SPIKE directory tree

• Xspike gbsv mimics Xgbsv (Combined factorize and solve)

• Xspike gbtrf and Xspike gbtrfp mimic Xgbtrf (Factorize)

• Xspike gbtrs and Xspike gbtrsp mimic Xgbtrs (Solve)

Where X may be D for double precision, Z for double complex, S for single precision (floating point),
and C for single precision complex. There are also the subroutines Xspike gbtrsi, which mimic
Xgdbtrs but perform iterative refinement.

2 Compilation

The following instructions apply to a Linux/Unix environment.

1. Obtain the SPIKE package. It may be found at http://www.spike-solver.org.

2. Put the package in your desired directory.

3. Extract the package: tar -xzvf spike-1.0.tar.gz. This should produce the file hier-
archy shown in figure 1.

4. Navigate to the src directory to build the project.

(a) Review the included make.inc file and make any necessary changes.

• SPIKE is written primarily in Fortran90, with some Fortran77. As such, it should
be possible to build the library with most Fortran compilers. gfortran and ifort
have been tested and examples exist for both. However, this method of building
will impose Fortran runtime dependencies. For example, if SPIKE is compiled using
ifort, and the user code is compiled with a C compiler or gfortran, it will be
necessary to link the Fortran runtime with -lifcoremt. Similarly, if gfortran
is used to compile the library, any other compilers which wish to call the library will
have to include -lgfortran. This is ‘option 1’ in make.inc.

• If a more portable library is desired, it is possible to replace the Fortran runtime
dependencies with included C functions. Currently, this option is only implemented
with the Intel Fortran compiler. This is ‘option 2’ in make.inc.

(b) Issue the make command. The build system is compatible with a parallel build process.
Select one of the following:

• The command make -j all may be issued to build the library with default op-
tions. The resulting library, libspike.a, will be placed in the directory spike-1.0/lib/x64.

2

http://www.spike-solver.org

• The variables ARCH and INSTALLDIR may also be passed to the makefile. The
library will be placed in the directory <INSTALLDIR>/<ARCH>. For example issu-
ing the command, make -j all ARCH=x64 INSTALLDIR=../ will produce the
library in the default directory.

3 Environment Variables

This implementation of SPIKE uses OpenMP and the system implementation of LAPACK. As a
result, it should respond to the environment variables of both systems.

Specifically, when using ifort and MKL:

• OMP NUM THREADS
Sets the number of threads that SPIKE can use. Any number of threads will be accepted.

• KMP AFFINITY
OpenMP affinity settings may increase performance. SPIKE is a domain decomposition al-
gorithm, and this implementation attempts to match partitions to OpenMP threads where
possible. So, locality may be increased when OpenMP threads are mapped consistently to
hardware threads. Additionally, hyperthreads have been found to be slightly performance de-
grading for SPIKE. On a system with two hyperthreads per core, we have used the following
setting to avoid hyperthreads:
KMP AFFINITY=granularity=fine,compact,1,0
This sets a given pair of hyperthreads to be maximally ’far’ from each other. When combined
with compact this makes the OpenMP runtime avoid using both hyperthreads at the same
time.

• MKL NUM THREADS & MKL DYNAMIC
For operations on each partition, SPIKE uses some LAPACK routines as well as the included
‘lbprim’ banded primitives. The latter call the BLAS routines.

Although there are many LAPACK implementations, the examples provided assume that
the popular Intel MKL version of the library. Because MKL itself also provides parallel
functionality, it is possible to implement a hybrid configuration where each partition can be
associated with multiple MKL threads. By default, MKL DYNAMIC is set to TRUE, which
means that MKL-LAPACK and MKL-BLAS will avoid using threading inside each partition.

To override this default value and force nested openmp parallelism MKL DYNAMIC must
be set to FALSE. In general, it is more useful to allocate threads to SPIKE when the matrix
has a narrow band, while MKL becomes more competitive when the band is wider. When
using nested parallelism, MKL NUM THREADS×OMP NUM THREADS should be equal to the total
number of threads you wish to use.

In general, combining SPIKE and MKL parallelism can be tricky, and we haven’t explored it
fully.

3

4 Examples

A minimal Fortran90 ‘hello world’ example is shown here. Additional examples (including a C
example) are provided in appendix A. More detailed examples are distributed with the package.

If the following code is placed in a file called example.f90, and that file is placed in the
root SPIKE directory, spike-1.0, it should be possible to compile the example by issuing the
command:

ifort example.f90 -qopenmp -I$MKLROOT/include -Llib/x64/ -lspike -mkl -o
example.exe

program main

integer :: info

integer , parameter :: n=600000 , kl=1, ku=1, nrhs=1

double precision , dimension(kl+ku+1,n) :: A,oA

double precision , dimension(n,nrhs) :: f,of

integer , dimension (64) :: spm

! De f ine mat r i x and r i g h t −hand−s i d e
A = -1.0d0

A(ku+1,:) = 4.0d0

f(:,1) = 1.0d0

oA=A

of=f

call spikeinit(spm ,n,max(kl ,ku)) ! I n i t i a l i z e spm array

spm (1) = 1 ! I n s t r u c t s SPIKE to p r i n t t im ing and p a r t i t i o n i n f o rma t i on

call dspike_gbsv(spm ,n,kl ,ku ,nrhs ,A,kl+ku+1,f,n,info)

! Check t h e r e s i d u a l
call dgbmv("N",n,n,kl ,ku ,1.0d0 ,oA ,kl+ku+1,f(:,1),1,-1.0d0 ,of(:,1),1)

print *, "Max residual is: ", maxval(abs(of(: ,1)))

end program

The resulting outputs using a multi-core processor are provided in Figure 2 and Figure 3 using
2 and 4 threads, respectively. The number of threads can be selected before running the code. In
BASH shell, we can use the following command with n=2,4
>export OMP NUM THREADS=n

As mentioned above, a more detailed set of examples is distributed with the package. It may be
found in the examples subdirectory of the spike-1.0 directory. There are examples for Fortran
using double precision, and C using double precision as well as single-complex precision. The
directories are structured as examples/<programming language>. Each example directory
contains a number of files:

• One per precision to show the use of the ’gbsv’ functionality

4

*********** SPIKE -SMP -BEGIN ******************

List of input parameters spm(1:64)-- if different from default

spm (1)=1

Size system 600000

kl,ku 1 1

#Threads (Total) available 2

2 Partitions and 2 Threads

Partition ratios: 1.800000000000000e+00 3.500000000000000e+00

#Partitions with 1 and 2 threads

2 0

Partition sizes: 300000 300000

|Factorization Time|

| LU or SPIKE on blocks |

--

| Thread | Partition | Time |

--

| 1 | 1 | 1.384186744689941e-02 |

| 2 | 2 | 1.330804824829102e-02 |

--

|Blocks Factorize | 1.385617256164551e-02 |

|Reduced System | 3.123283386230469e-05 |

|Overall Factorize| 1.390504837036133e-02 |

--

|Solve Time|

| Solve Sweeps on blocks |--

| Thread | Partition | Time 1 | Time 2 |

| 1 | 1 | 1.222529411315918e-01 | 1.232550144195557e-01 |

| 2 | 2 | 1.252839565277100e-01 | 1.235320568084717e-01 |

--

|Blocks Solve | 1.252870559692383e-01 | 1.235339641571045e-01 |

|Reduced System Solve| 7.295608520507812e-05 |

|Overall Solve | 2.488939762115479e-01 |

--

Max residual is : 2.775557561562891E-016

Figure 2: Output of helloworld example using 2 threads.

5

*********** SPIKE -SMP -BEGIN ******************

List of input parameters spm(1:64)-- if different from default

spm (1)=1

Size system 600000

kl,ku 1 1

#Threads (Total) available 4

4 Partitions and 4 Threads

Partition ratios: 1.800000000000000e+00 3.500000000000000e+00

#Partitions with 1 and 2 threads

4 0

Partition sizes: 234783 65217 65217 234783

|Factorization Time|

| LU or SPIKE on blocks |

--

| Thread | Partition | Time |

--

| 1 | 1 | 9.718179702758789e-03 |

| 2 | 2 | 5.499386787414551e-02 |

| 3 | 3 | 6.807303428649902e-02 |

| 4 | 4 | 9.536981582641602e-03 |

--

|Blocks Factorize | 6.931304931640625e-02 |

|Reduced System | 1.089572906494141e-04 |

|Overall Factorize| 6.950306892395020e-02 |

--

|Solve Time|

| Solve Sweeps on blocks |--

| Thread | Partition | Time 1 | Time 2 |

| 1 | 1 | 9.419488906860352e-02 | 8.776593208312988e-02 |

| 2 | 2 | 4.948687553405762e-02 | 5.314803123474121e-02 |

| 3 | 3 | 7.169198989868164e-02 | 4.890084266662598e-02 |

| 4 | 4 | 9.282588958740234e-02 | 9.039402008056641e-02 |

--

|Blocks Solve | 9.419798851013184e-02 | 9.039592742919922e-02 |

|Reduced System Solve| 2.121925354003906e-05 |

|Overall Solve | 1.846210956573486e-01 |

--

Max residual is : 2.775557561562891E-016

Figure 3: Output of helloworld example using 4 threads.

6

• One to show the pivoting ’trf/trs’ functionality

• One to show the non-pivoting ’trf/trs’ functionality

A Makefile has been included in each programming language. Issue the command make all in
the appropriate directory to build the examples for your language of choice. The examples may also
be configured with the included make.inc file, similarly to the build configuration of the library
itself. If a custom install directory has been used when building the library, it may be necessary to
set a SPIKEROOT environment variable to inform the Makefile of the location of the library. The
Makefile will attempt to find libspike.a in the directory SPIKEROOT/lib/ARCH. By default this
is located, starting from the directory where the package was unpacked, at spike-1.0/lib/x64.

5 Usage

The general calling scheme is as follows:

• Initialize the spike parameter array. Call using the spikeinit subroutine.

• Optionally call Xspike tune to discover a machine specific tuning constant.

• Optionally configure the spm array to your liking (detailed below).

• Choose one of the following:

– If you would like to perform the factorization and solve in one call...

∗ call Xspike gbsv to finish the problem.

– If you would like to perform the factorization and solve separately...

∗ Allocate a work array of size max(kl, ku)2 × spm(10) (The type of this work array
should be the same as the matrix and vectors used).

∗ If you would like to use the default non-pivoting operation...

· Optionally save a copy of A into C if you might use iterative refinement.

· call Xspike gbtrf to perform the SPIKE factorization.

· If you don’t want to use iterative refinement, call Xspike gbtrs to finish.

· If you do want to use iterative refinement, call Xspike gbtrsi to finish.

∗ If you would like to use pivoting operation...

· Call Xspike gbtrfp to perform the SPIKE factorization.

· Note — the layout of the A matrix is unusual in this case

· Call Xspike gbtrsp to finish the problem.

5.1 SPIKE parameter array entries

The SPM array controls some details of the SPIKE computation. Default values are in bold. Note:
Array elements are given using Fortran notation, where the first element of the array is spm(1). If
you are using C, the array indices should be reduced by one.

User input flags:

• spm(1): Print flag.

– 0: Do not print spike partition and timing information

7

– 1: Print spike partition and timing information

• spm(2): Partition size optimization flag. To improve load balancing, sizes of the submatrices
into which A is broken vary in size. These sizes are described in terms of the ratio of the first
partition size to the sizes of the two types of internal partitions. The best value depends on
the hardware used, the bandwidth of the matrix, and the number of vectors in the solution
B. For more details see section 5.2.

– 0: Use partition ratio values stored in spm(4) and spm(5)

– 1: Use partition ratio values designed for many solution vectors (it turns out these are
constant, so spm(4) and spm(5) are ignored in this case)

– 2: Use number of solution vectors and matrix bandwidth to compromise (only for
Xspike gbsv)

• spm(3): Precision improvement flag. This feature is only availible when using Xspike gbsv.
SPIKE may either use partial pivoting or iterative refinement to improve numerical results,
at the cost of performance.

– 0: Do not attempt to improve precision

– 1: Use a pivoting solver

– 2: Use iterative refinement

• spm(4): (expert option) Ratio of the first partition size to the size of the large inner partition
(ratio is spm(4)/10). Defaults to 18 (Ratio 1.8), which we have found to provide good perfor-
mance in many cases. May be modified by the Xspike tune or Xspike gbsv subroutines.
This value may be ignored based on the setting for spm(2).

• spm(5): (expert option) Ratio of the first partition size to the size of the small inner partition
(ration is spm(5)/10). Defaults to 35 (Ratio 3.5), which we have found to provide good perfor-
mance in many cases. May be modified by the Xspike tune or Xspike gbsv subroutines.
This value may be ignored based on the setting for spm(2).

• spm(7): (expert option) Tuning constant for partition ratio (expert option). This is ultimately
used to set spm(4) and spm(5) in Xspike gbsv if the spm(2) flag is set to 2 (automatic
tuning). Defaults to 16, which we have found to provide good performance in many cases.

• spm(11): Max number of iterations for iterative refinement. Default is 3. May be ignored
based on spm(3).

• spm(12): Exponent for residual tolerance for double precision (and double complex)– I.E, res
tolerance is 10−spm(12). Default is 12. May be ignored based on spm(3).

• spm(13): Exponent for residual tolerance for single precision (and single complex)– I.E, res
tolerance is 10−spm(13). Default is 5. May be ignored based on spm(3).

• spm(14) : Norm type used internally for various calculations (particularly, for finding the
residual when performing iterative refinement).

– 0: Norm ∞
– 1: Norm 1

– 2: Norm 2

8

Information parameters (information obtained from spikeinit.

• spm(10): Number of klu× klu blocks required for work array.

• spm(20): Number of partitions into which SPIKE is broken.

• spm(21): Number of recursive levels for reduced system.

• spm(22): Number of threads used by SPIKE.

• spm(23): Number of partitions using a SPIKE2 × 2 kernel, for two threaded factorize and
solve.

5.2 A quick(-ish) note about partition sizes and spm

There are three types of partitions into which SPIKE breaks the A matrix. The top-left and
bottom-right partitions of A take the least work per element, and thus are the largest. Depending
on the number of threads, some of the remaining partitions will be worked on by two threads, and
some will be worked on by one. Partitions worked on by two threads are the second-largest, and
partitions worked on by one are the smallest.

The size of these partitions are described in terms of ratios between them. The factors that
determine these ratios can be separated into those that depend on the machine used to run SPIKE,
and those that depend on the matrix and vectors used. The subroutine Xspike tune (detailed
below) will calculate the hardware dependent factor and save it to spm.

To combine the problem dependent and hardware dependent factors, it is necessary to know the
number of vectors in the solution before performing the factorization. We do not necessarily know
this value when Xspike gbtrf is called. Instead, the parameter spm(2) can be used to describe
one of two limiting cases. If you expect that the number of vectors in the solution is much greater
than the matrix bandwidth, use spm(2) = 1. Otherwise (when using Xspike gbtrf) the default
of spm(2) = 0 is usually better.

Finally, when using Xspike gbsv (combined factorize and solve), the number of vectors in
the solution is known before the factorization is performed. If spm(2)=2 is set, Xspike gbsv will
take both factors into account. Note that this computation does not take iterative refinement into
account (as the number of iterative steps is not known beforehand), so if you would like to use
iterative refinement with a poorly conditioned matrix it may may sense to use spm(2) = 1.

5.3 Subroutine Listing

Input parameters (User Configurable)

5.3.1 spikeinit

spikeinit(spm,n,max(kl,ku))
This subroutine initializes the spike parameter array (spm) to reasonable defaults. spm controls

the behavior of SPIKE, primarily the partitioning scheme. This function requires to values of n
and max(kl,ku) because it also calculates the size of the SPIKE workarray which the user will
have to provide. The contents of spm are shown in section 5.1.

9

5.3.2 Xspike tune

Xspike tune(spm)
This subroutine will determine the hardware dependent tuning constant for used to determine

the partition ratios. The tuning constant is stored in spm(7) (not documented). This subroutine
will also fill spm(4) and spm(5), the partition ratios, to their large bandwidth matrix values.

Discovering this tuning constant requires a single threaded banded factorize and solve. So, it is
probably inadvisable to perform this every time SPIKE is used. Ultimately the information found
by Xspike tune depends on the big-O run times of the factorize and solve code which will be called
by SPIKE on the partitions of A. This should not vary for a given hardware/LAPACK pairing, so
Xspike tune could be called when your program first starts, or even found independently and
saved as an environment variable. It is likely, however, to change if MKL NUM THREADS changes. It
is also likely that this tuning constant is different for your pivoting and non-pivoting routines.

5.3.3 Xspike gbsv

Xspike gbsv(spm,n,kl,ku,nrhs,A,lda,B,ldb,info)
This is the do-it-all factorize and solve subroutine. A matrix and a collection of vectors are

entered, and the operation AY = B → Y (solution in B) is performed. The residual value for B
is checked, and simple iterative refinement is performed if it is above the given tolerance. Unlike
Lapack, the matrix A is returned to the initial state upon return. Note that, even in the case when
the pivoting option is enabled, the layout of the matrix does not change.

5.3.4 Xspike gbtrf

Xspike gbtrf(spm,n,kl,ku,A,lda,work,info)
This subroutine performs the SPIKE DS factorization. This subroutine naturally over-writes

A. So if you might want to perform some refinement later, or use A for something else, you should
save it elsewhere before calling this subroutine.

5.3.5 Xspike gbtrs

Xspike gbtrs(spm,trans,n,kl,ku,nrhs,A,lda,work,B,ldb)
This subroutine performs the solve stage for the matrix factorized by Xspike gbtrf. Note

that this subroutine does not write to A or the work array, so the factorization may be reused if
you keep those arrays intact.

5.3.6 Xspike gbtrsi

Xspike gbtrsi(spm,trans,n,kl,ku,nrhs,C,ldc,A,lda,work,B,ldb)
This subroutine performs the solve stage, and then performs some iterative refinement if the

solution is not within the desired tolerance. Similar to the previous subroutine, the matrix A and
the work array are not written to in this subroutine, and so may be reused for later solves if you
would like. Note that this subroutine does not accept a ipiv argument, because the iterative
refinement and pivoting solvers are incompatible.

5.3.7 Xspike gbtrfp

Xspike gbtrfp(spm,n,kl,ku,A,lda,work,ipiv,info)

10

This subroutine performs the SPIKE DS factorization, using pivoting factorization and solve
operation on the individual partitions. This subroutine naturally over-writes A. So if you might
want to perform some refinement later, or use A for something else, you should save it elsewhere
before calling this subroutine. Note that this function requires additional rows in the input array
A. This is described in section 5.4.

5.3.8 Xspike gbtrsp

Xspike gbtrsp(spm,n,kl,ku,nrhs,A,lda,work,ipiv,B,ldb)
This subroutine performs the solve stage for the matrix factorized by Xspike gbtrfp. Note

that this subroutine does not write to A or the work array, so the factorization may be reused if
you keep those arrays intact.

5.4 Table of variables

Name Type Size Description

spm int 64 The SPIKE parameter array.

trans char T for transpose solve, N for non-transpose solve,
C for conjugate-transpose solve

n int Size of matrix A

kl int Lower bandwidth of matrix A

ku int Upper bandwidth of matrix A

nrhs int ‘Number of right hand sides’ - the number of vectors in B

C X ldc× n A non-factorized copy of the matrix A

ldc int The leading dimension for the matrix C. ldc=kl+ku+1

A X lda× n The matrix A with which we will be performing A−1B → B
In most instances, A should be stored in the
LAPACK/BLAS band storage format.
*For most routines no extra-storage is needed, and the matrix
can be stored in rows 1 to kl+ku+1

*For Xspike gbtrfp the storage is similar to the format used by
Xgbtrf but with the input matrix occupying rows
1+max(kl,ku) to max(kl,ku)+kl+ku,rather than rows kl+1 to 2kl+ku

lda int The leading dimension for the matrix A. Depends on the function used
Xspike gbsv, Xspike gbtrf,
Xspike gbtrs, Xspike gbtrsi : lda=kl+ku+1
Xspike gbtrfp, Xspike gbtrsp : lda=max(kl,ku)+kl+ku+1

work X max(kl, ku)2 Work array used to store the SPIKE reduced system.
×spm(10)

ipiv int n Holds the permutation array for pivoting.

B X ldb× nrhs The vectors B on which we will be performing A−1B → B

ldb int Leading dimension of B. ldb ≥ n.

info int Info parameter
info = 0 → Success.
info = 1 → Boosting required.
info = 2 → Illegal matrix entry.

Variables with no size are scalar. X may be double precision when using dspike, or double complex

11

when using zspike. Note that the size of the work array depends on the number of threads used.
spm(10) is set by spikeinit.

5.5 SPM entries

Quick index of SPM entries. Details are shown in section 5.1. Note: Array elements are given
following Fortran notation, where the first element of the array is spm(1).

Configuration Entries

1 Print flag

2 Partition size optimization flag

3 Pivoting/Iterative refinement flag

4 Large inner partition ratio

5 Small inner partition ratio

7 Tuning parameter

11 Iterative refinement iteration limit

12 Iterative refinement double precision residual tolerance

13 Iterative refinement single precision residual tolerance

14 Norm type

Information Entries

10 Number of klu× klu blocks needed for the work matrix

20 Number of partitions into which SPIKE is broken

21 Number of recursive levels for reduced system

22 Number of threads used by SPIKE

23 Number of partitions using SPIKE 2× 2 kernel

12

A More Examples

If the following code is placed in a file called example.f90, and that file is placed in the root SPIKE
directory, spike-1.0, it should be possible to compile the example by issuing the command:

ifort example.f90 -qopenmp -I$MKLROOT/include -Llib/x64/ -lspike -mkl -o
example.exe

A.1 Split Factorize & Solve

program main

integer :: info

integer , parameter :: n=60, kl=1, ku=1, nrhs=1

double precision , dimension(kl+ku+1,n) :: A,oA

double precision , dimension(n,nrhs) :: f,of

double precision , allocatable , dimension (:) :: work

integer , dimension (64) :: spm

! De f ine mat r i x and r i g h t −hand−s i d e
A = -1.0d0

A(ku+1,:) = 4.0d0

f(:,1) = 1.0d0

oA=A

of=f

call spikeinit(spm ,n,max(kl,ku)) ! I n i t i a l i z e spm array

allocate(work(max(kl,ku)*max(kl,ku)*spm (10))) ! Prepare work ar ray

spm(1) = 1 ! I n s t r u c t s SPIKE to p r i n t t im ing and p a r t i t i o n i n f o rma t i on

call dspike_gbtrf(spm ,n,kl,ku,A,kl+ku+1,work ,info)

call dspike_gbtrs(spm ,’n’,n,kl ,ku ,nrhs ,A,kl+ku+1,work ,f,n)

! Check t h e r e s i d u a l
call dgbmv(’N’,n,n,kl,ku ,1.0d0 ,oA ,kl+ku+1,f(:,1),1,-1.0d0 ,of(:,1),1)

print *, "Max residual is: ", maxval(abs(of(: ,1)))

end program

13

A.2 Split Factorize & Solve With Pivoting

program main

integer :: info , klu

integer , parameter :: n=60, kl=1, ku=1, nrhs=1

double precision , dimension(max(kl ,ku)+kl+ku+1,n) :: A

double precision , dimension(kl+ku+1,n) :: oA

double precision , dimension(n,nrhs) :: f,of

double precision , allocatable , dimension (:) :: work

integer , dimension (64) :: spm

integer , dimension(n) :: ipiv

klu=max(kl ,ku)

! De f ine mat r i x and r i g h t −hand−s i d e
oA = -1.0d0

oA(ku+1,:) = 4.0d0

f(:,1) = 1.0d0

A(klu+1:klu+kl+ku+1,:) = oA(1:kl+ku+1,:) ! A r e q u i r e s e x t r a p i v o t i n g rows
of=f

call spikeinit(spm ,n,max(kl ,ku)) ! I n i t i a l i z e spm array

allocate(work(klu*klu*spm (10))) ! Prepare work ar ray

spm (1) = 1 ! I n s t r u c t s SPIKE to p r i n t t im ing and p a r t i t i o n i n f o rma t i on

call dspike_gbtrfp(spm ,n,kl ,ku ,A,klu+kl+ku+1,work ,ipiv ,info)

call dspike_gbtrsp(spm ,n,kl ,ku ,nrhs ,A,klu+kl+ku+1,work ,ipiv ,f,n)

! Check t h e r e s i d u a l
call dgbmv(’N’,n,n,kl ,ku ,1.0d0 ,oA ,kl+ku+1,f(:,1),1,-1.0d0 ,of(:,1),1)

print *, "Max residual is: ", maxval(abs(of(: ,1)))

end program

14

A.3 Solve With Iterative Refinement

program main

integer :: info

integer , parameter :: n=60, kl=1, ku=1, nrhs=1

double precision , dimension(kl+ku+1,n) :: A,oA

double precision , dimension(n,nrhs) :: f,of

double precision , allocatable , dimension (:) :: work

integer , dimension (64) :: spm

! De f ine mat r i x and r i g h t −hand−s i d e
A = 1.0d0

A(ku+1,:) = 1.0001 d0 ! Value s e l e c t e d f o r f o r c e one round o f r e f i n emen t
f(:,1) = 1.0d0

oA=A

of=f

call spikeinit(spm ,n,max(kl ,ku)) ! I n i t i a l i z e spm array

allocate(work(max(kl,ku)*max(kl,ku)*spm (10))) ! Prepare work ar ray

spm(1) = 1 ! I n s t r u c t s SPIKE to p r i n t t im ing and p a r t i t i o n i n f o rma t i on

call dspike_gbtrf(spm ,n,kl,ku,A,kl+ku+1,work ,info)

call dspike_gbtrsi(spm ,’n’,n,kl ,ku ,nrhs ,oA ,kl+ku+1,A,kl+ku+1,work ,f,n)

! Check t h e r e s i d u a l
call dgbmv(’N’,n,n,kl,ku ,1.0d0 ,oA ,kl+ku+1,f(:,1),1,-1.0d0 ,of(:,1),1)

print *, "Max residual is: ", maxval(abs(of(: ,1)))

end program

15

A.4 Transpose Solve

program main

integer :: info

integer , parameter :: n=60, kl=1, ku=1, nrhs=1

double precision , dimension(kl+ku+1,n) :: A,oA

double precision , dimension(n,nrhs) :: f,of

double precision , allocatable , dimension (:) :: work

integer , dimension (64) :: spm

! De f ine mat r i x and r i g h t −hand−s i d e
A = -1.0d0

A(ku+1,:) = 4.0d0

f(:,1) = 1.0d0

oA=A

of=f

call spikeinit(spm ,n,max(kl ,ku)) ! I n i t i a l i z e spm array

allocate(work(max(kl,ku)*max(kl,ku)*spm (10))) ! Prepare work ar ray

spm(1) = 1 ! I n s t r u c t s SPIKE to p r i n t t im ing and p a r t i t i o n i n f o rma t i on

call dspike_gbtrf(spm ,n,kl,ku,A,kl+ku+1,work ,info)

call dspike_gbtrs(spm ,’T’,n,kl ,ku ,nrhs ,A,kl+ku+1,work ,f,n)

! Check t h e r e s i d u a l
call dgbmv(’T’,n,n,kl,ku ,1.0d0 ,oA ,kl+ku+1,f(:,1),1,-1.0d0 ,of(:,1),1)

print *, "Max residual is: ", maxval(abs(of(: ,1)))

end program

16

A.5 C example

If the following code is placed in a file called example.c, and that file is placed in the root SPIKE
directory, spike-1.0, it should be possible to compile the example by issuing the command:

gcc example.c -Iinclude -Llib/x64/ -lspike -L$MKLROOT/lib/intel64

-Wl,--no-as-needed -lmkl intel lp64 -lmkl intel thread -lmkl core -liomp5

-lpthread -lm -ldl -m64 -I$MKLROOT/include

#include <stdio.h>

#include <mkl.h>

#include "spike.h"

#define M(p,j,i) p[j+ ld##p *(i)] // FORTRAN− s t y l e mat r i x macro .

int main() {

int spikeparam [64];

const char trans=’N’;

int n=60, kl=1, ku=1, nrhs=1, klu;

int ldf=n, ldof=n, ldA=kl+ku+1, ldoA=kl+ku+1;

double res , d_one = 1.0, d_mone =-1.0;

double A[(kl+ku+1)*n], oA[(kl+ku+1)*n], f[n*nrhs], of[n*nrhs];

int i, j, resi , i_one =1;

int info;

klu = (kl >= ku) ? kl : ku;

// Generate A and copy i t t o oA
for(j=0;j<ldA;j++)

for(i=0;i<n;i++)

{ M(A,j,i) = (j==ku) ? 4.0 : -1.0;

M(oA ,j,i) = M(A,j,i);}

// Generate B (a l l ones) and copy i t t o oB .
for(j=0;j<ldf;j++)

for(i=0;i<nrhs;i++)

{ M(f,j,i) = 1.0;

M(of ,j,i) = M(f,j,i);}

// I n i t a l i z e t h e s p i k e params array
spikeinit(spikeparam ,&n,&klu);

// I n s t r u c t SPIKE to p r i n t t im ing and p a r t i t i o n i n g i n f o
// Note t h a t t h e inde x i s o f f by one , b e cau s e we ’ re u s i n g C.
spikeparam [0] = 1;

dspike_gbsv(spikeparam ,&n,&kl ,&ku ,&nrhs ,A,&ldA ,f,&ldf ,&info);

// Let ’ s j u s t check t h e r e s i d u a l o f t h e f i r s t v e c t o r ,
// s i n c e we on l y have one v e c t o r by d e f a u l t .
DGBMV (&trans , &n, &n, &kl, &ku,

&d_mone , oA, &ldA , &M(f,0,0),&i_one ,

&d_one , &M(of ,0,0), &i_one);

res = M(of ,idamax (&n, &M(of ,0,0), &i_one)-1, 0);

printf("n, \t kl , \t ku , \t nrhs , \t residual\n");

printf("%d, \t %d, \t %d, \t %d, \t %.3E \n",n,kl ,ku ,nrhs ,res);

return 0; }

17

	Intro
	Compilation
	Environment Variables
	Examples
	Usage
	SPIKE parameter array entries
	A quick(-ish) note about partition sizes and spm
	Subroutine Listing
	spikeinit
	Xspike_tune
	Xspike_gbsv
	Xspike_gbtrf
	Xspike_gbtrs
	Xspike_gbtrsi
	Xspike_gbtrfp
	Xspike_gbtrsp

	Table of variables
	SPM entries

	More Examples
	Split Factorize & Solve
	Split Factorize & Solve With Pivoting
	Solve With Iterative Refinement
	Transpose Solve
	C example

